BARON user manual v. 13.0.0

April 17, 2014

Nick Sahinidis, The Optimization Firm, LLC, niksah@gmail.com, http://www.minlp.com

Contents
1 Introduction e e e 2
1.1 Licensing and software requirements 2
2 Model requirements L e e e e e e e e e e e e e 3
2.1 Allowable nonlinear functions 3
2.2 Variable and expression bounds 3
3 BARON input ittt i, 3
3.1 UsSage . . . v v v 4
3.2 Input grammar Lo Lo 4
3.3 The options section 5
3.4 The problem data 5
3.5 Error messages 7
3.6 Sample input file 7
3.7 Other ways to access BARON 9
4 BARON output ittt 9
4.1 BARON screen output 9
4.2 Termination messages, model and solver statuses 12
4.3 BARON solution output 13
5 Some BARON features oo 16
5.1 No starting point is required 16
5.2 Finding a few of the best or all feasible solutions 16
5.3 Using BARON as a multi-start heuristic solver 19
5.4 Systematic treatment of unbounded problems 19
6 The BARON options 0 i i i i i i i i it e et e e e oo 19
6.1 Termination options 19
6.2 Relaxation options Lo 21

6.3 Range reduction options Lo Lo 21

http://www.minlp.com

2 BARON user manual v. 13.0.0

6.4 Tree management options Lo oL 22
6.5 Local search options 23
6.6 Output options 23
6.7 Subsolver options 24
6.8 Licensing optionso 25
7 Bibliography o . e e e e e e e e 25

1 Introduction

The Branch-And-Reduce Optimization Navigator (BARON) is a computational system for the
global solution of algebraic nonlinear programs (NLPs) and mixed-integer nonlinear programs
(MINLPs).

While traditional NLP and MINLP algorithms are guaranteed to provide global optima only
under certain convexity assumptions, BARON implements deterministic global optimization al-
gorithms of the branch-and-bound type that are guaranteed to provide global optima under fairly
general assumptions. These assumptions include the availability of finite lower and upper bounds
on problem variables and their expressions in the NLP or MINLP to be solved.

BARON implements algorithms of the branch-and-bound type, enhanced with a variety of con-
straint propagation and duality techniques for reducing ranges of variables in the course of the
algorithm.

Parts of the BARON software were created at the University of Illinois at Urbana-Champaign
and Carnegie Mellon University.

1.1 Licensing and software requirements

The demo version of BARON is freely available at http://www.minlp.com/download and can
handle problems with up to 10 variables, 10 constraints, and 50 nonlinear operations. In order
to use BARON for larger problems, users will need to have a valid BARON license. The Op-
timization Firm provides licenses that permit users to use BARON directly on any Windows
or Linux platform as well as under MATLAB. In addition, BARON distributors GAMS and
AIMMS provide licenses for using BARON under their modeling systems.

The software includes the Coin solvers CLP and IPOPT for solving BARON’s linear program-
ming (LP) and nonlinear programming (NLP) subproblems, respectively. Licensed LP and NLP
solvers are optional and may expedite convergence. The latter are currently available only
with the GAMS and AIMMS versions of BARON. Current valid LP subsolvers for BARON are
CLP, CPLEX, and XPRESS. Current valid NLP subsolvers are CONOPT, IPOPT, MINOS, and
SNOPT.

http://www.minlp.com/download

BARON user manual v. 13.0.0 3

2 Model requirements

BARON addresses the problem of finding global solutions to general nonlinear and mixed-integer
nonlinear programs:

min f(z)
st. g(x) <0
reX

where f: X - R, g: X — R™, and X C R". The set X may include integer restrictions. The
types of functions f and ¢ currently handled by BARON are discussed below.

2.1 Allowable nonlinear functions

In addition to multiplication and division, BARON can handle nonlinear functions that involve
exp(x), In(z), z* for real o, and p* for real 5. GAMS/BARON and AIMMS/BARON auto-
matically handle |z| and z¥, where x and y are variables; otherwise, suitable transformations
discussed below can be used. Currently, there is no support for other functions, including the
trigonometric functions sin(z), cos(x), etc.

2.2 Variable and expression bounds

Nonlinear variables and expressions in the mathematical program to be solved must be bounded
below and/or above. It is important that finite lower and upper bounds be provided by the user on
as many problem variables as possible. However, providing finite bounds on variables alone may
not suffice to guarantee finite bounds on nonlinear expressions arising in the model. For example,
consider the term 1/x for x € [0, 1], which has finite variable bounds, but is unbounded. It is
important to provide bounds for problem variables that guarantee that the problem functions are
finitely-valued in the domain of interest. If the user model does not include variable bounds that
guarantee that all nonlinear expressions are finitely-valued, BARON’s preprocessor will attempt
to infer appropriate bounds from problem constraints. If this step fails, global optimality of the
solutions provided may not be guaranteed.

3 BARON input

There are various ways for passing an optimization problem to BARON:

e Directly, using the BARON modeling language.

e Indirectly, using one of the available BARON interfaces under Matlab, AIMMS, or GAMS.

In this section, we describe the BARON modeling language in detail.

4 BARON user manual v. 13.0.0

3.1 Usage

BARON provides a high-level modeling language capable of reading a mixed-integer nonlinear
optimization model in a relatively simple format. Input is provided in the form of a text file. Even
though not required, it is strongly recommended that all BARON input files have the extension
.bar. Let the input file be called test.bar and let the name of the BARON executable be
baron. Then, issuing the command

baron test
or
baron test.bar

results in BARON parsing the file and solving the problem.

3.2 Input grammar

The following rules should be adhered to while preparing a BARON input file:

e All statements should be terminated by a semicolon (;).
e Reserved words must appear in uppercase letters.

e Variable names can be in lower or upper case. The parser is case sensitive, i.e., X1 and x1
are two different variables.

e Variable names should be no longer than 15 characters.
e Variable names must start with a letter.

e With the exception of underscores (), non-alphanumeric characters such as hyphens (-)
are not permitted in variable names.

e Any text between // and the end of a line is ignored (i.e., it is treated as a comment).

e The signs “+7, “” “*” and “/” have their usual meaning of arithmetic operations.

e “"7 is the power/exponentiation operator where, if the base is a negative constant, the
exponent must be an integer. Note that the order of operations may be different in different
computing environments:

— 2"y z = (x"y) z in GAMS, Matlab, and Excel.

— 2"y z=2x"(y 2) in Fortran, AMPL, BARON, Mathematica
e The exponential function is denoted as exp().

e The natural logarithm is available as log() as well as In(). To enter log;,() in the model,
use the transformation log,,(x) = log,y(e) * log(x) = 0.4342944819032518 * log(z).

BARON user manual v. 13.0.0 5

e BARON does not allow z¥, where x and y are both variables. It is permissible to have
either x or y as a variable in this case but not both. The following reformulation can be

used around this: a¥ = exp(y * log(z)). This reformulation is done automatically when
BARON is used under GAMS, AIMMS or Matlab.

e BARON does not allow the use of absolute values |x| in the model file. However, this func-
tion can be modeled equivalently as |z| = (2%)°®. This reformulation is done automatically

when BARON is used under GAMS, AIMMS or Matlab.

e Parentheses (“(” and “)”) can be used in any meaningful combination with operations in
mathematical expressions.

The input file is divided into two sections: the options and the problem data sections.

3.3 The options section

This section is optional. If used, it should be placed on top of the file. Any of BARON’s
algorithmic options can be specified here. This section has the following form:

OPTIONS {

<optnamel>: <optvaluel>;
<optname2>: <optvalue2>;
<optname3>: <optvalue3>;

by

The names and corresponding values of the BARON options are described in detail in Section 6.
Options not specified here take their default values. Instead of OPTIONS, the word OPTION can
also be used.

3.4 The problem data

This section contains the data relating to the particular problem to be solved. The section can
be divided into the following parts. Note that the words EQUATIONS, ROWS, and CONSTRAINTS are
used interchangeably:.

e Variable declaration: All variables used in the problem have to be declared before they
are used in equations. Variables can be declared as binary, integer, positive or free using the
keywords BINARY_VARIABLES, INTEGER_VARIABLES, POSITIVE_VARIABLES, and VARIABLES
respectively. In these keywords, VARIABLE or VAR may be used instead of VARIABLES and
the underscore may be replaced by a space. All discrete (binary and integer) variables
should be declared before any continuous variables. A sample declaration is as follows:

BINARY_VARIABLES y1, y2; // 0-1 variables
INTEGER_VARIABLES x3, x7; // discrete variables
POSITIVE_VARIABLES x3, x4, x6; // nonnegative variables
VARIABLE x5; // this is a free variable

BARON user manual v. 13.0.0

e Variable bounds (optional): Lower and upper bounds on previously declared variables
can be declared using the keywords LOWER_BOUNDS and UPPER_BOUNDS, respectively. The
word BOUND can be used instead of BOUNDS. A sample bounds declaration follows:

LOWER_BOUNDS{

x7: 10;

x5: -300;

}
UPPER_BOUNDA{
x4: 100;

}

e Branching priorities (optional): Branching priorities can be provided using the keyword
BRANCHING_PRIORITIES. The default values of these parameters are set to 1. Variable vio-
lations are multiplied by the user-provided priorities before a branching variable is selected.
A sample branching priorities section follows:

BRANCHING_PRIORITIES{
x3: 10;
x5: 0; }

The effect of this input is that variable x3 will be given higher priority than all others,
while variable x5 will never be branched upon.

e Equation declaration: An identifier (name) corresponding to each equation (constraint)
has to be declared first. The keywords EQUATION and EQUATIONS can be used for this
purpose. A sample equation declaration is shown below.

EQUATIONS el, e2, e3;

The naming rules for equations are the same as those for variables, i.e., all equation names
are case-sensitive and should begin with a letter.

e RELAXATION_ONLY_EQUATIONS <list equation names>;

This equation declaration can be used to specify constraints to be used for relaxation
construction only. This is optional and must follow after the EQUATIONS declaration and
before the equation definitions.

e CONVEX_EQUATIONS <list equation names>;

This equation declaration can be used to specify constraints that are convex. This is op-
tional and must follow after the EQUATIONS declaration and before the equation definitions.

e LOCAL_EQUATIONS <list equation names>;

Similar to the previous two in usage.

BARON user manual v. 13.0.0 7

e Equation definition: Each equation (or inequality) declared above is written in this

section of the input file. The equation is preceded by its corresponding identifier. The
bounds on the equations can be specified using the symbols == (equal to), <= (less than
or equal to) and >= (greater than or equal to). Both <= and >= can be used in the same
equation. A sample equation definition is shown below.

el: 5*%x3 + y2 - 3*x573 >= 1;
e2: yl + 2xx4 - 2xx7 == 25.7;
e3: -20 <= x4 + 2xyl*x3 + x6 <= 50;

Any variables must appear only on one side of the relational operator. That is, the “left-
hand side” and the “right-hand side” should be pure numbers or expressions involving
constants but no variables.

Objective function: BARON optimizes a given objective function. This can be declared
using the OBJ and the minimize or maximize keywords. A sample objective definition is
shown below:

OBJ: minimize 7*x3 + 2*x6;

Starting point (optional): A starting point can be optionally specified using the keyword
STARTING_POINT as follows:

STARTING_POINT{

x1: 50;
x4: 100;
x7: 300;
}

3.5 Error messages

Any errors in the input file are reported in the form of “warnings” and “errors.” BARON tries to
continue execution despite warnings. In case the warnings and/or errors are severe, the program
execution is stopped and the line where the fatal error occurred is displayed. The input file
should be checked even if the warnings are not severe, as the problem might have been parsed
in a way other than it was intended to be.

3.6 Sample input file

A sample input file for BARON is shown below:

//
//
//
//

This is a gear train design problem taken from the GAMS test library

A compound gear train is to be designed to achieve a specific
gear ratio between the driver and driven shafts. The objective

BARON user manual v. 13.0.0

// of the gear train design is to find the number of teeth of the
// four gears and to obtain a required gear ratio of 1/6.931.

//
// The problem originated from:

// Deb, K, and Goyal, M, Optimizing Engineering Designs Using a
// Combined Genetic Search. In Back, T, Ed, Proceedings of the
// Seventh International Conference on Genetic Algorithms. 1997,

// pp. 521-528.
INTEGER_VARIABLES i1,i2,i3,i4;

LOWER_BOUNDS{

il: 12;
i2: 12;
i3: 12;
id: 12;
}
UPPER_BOUNDS{
il: 60;
i2: 60;
i3: 60;
id: 60;
}

EQUATIONS e2,e3;

e2: - 13 + i4d >= 0;
e3: il - i2 >= 0;

// number of teeth in each of the gears

// symmetry constraints

// the objective aimms to make the reciprocal of the

// gear ratio as close to 6.931 as possible.

// an ideal design will have an objective equal to 1.

OBJ: minimize (6.931 - i1xi2/(i3%i4))"2 + 1;

STARTING_POINT{

il: 24;
i2: 24;
i3: 24;
id: 24,
}

Additional examples can be found at http://www.theoptimizationfirm.com/download.

http://www.theoptimizationfirm.com/download

BARON user manual v. 13.0.0

3.7 Other ways to access BARON

For information on how to access BARON under Matlab, see the BARON/MATLAB interface
manual at http://www.theoptimizationfirm.com/products/barmat. For information on how
to access BARON under GAMS or AIMMS, consult the corresponding web sites of these modeling

languages.

4 BARON output

4.1 BARON screen output

The screen output below is obtained for the MINLP model gear.bar.

BARON version 13.0.0. Built: LNX-64 Mon Jan 13 22:09:56 EST 2014

If you use this software, please cite:
Tawarmalani, M. and N. V. Sahinidis, A polyhedral
branch-and-cut approach to global optimization,

Mathematical Programming, 103(2), 225-249, 2005.

BARON is a product of The Optimization Firm, LLC. http://www.minlp.com/
Parts of the BARON software were created at the

University of Illinois at Urbana-Champaign.

No BARON license file found in user PATH.
Model size is allowable within BARON demo size.
This BARON run may utilize the following subsolver(s)

For LP: COIN LP

For NLP: COIN IPOPT with MUMPS and METIS

Continuing in demo mode.

Starting solution is feasible with a value of

Doing local search
Solving bounding LP
Starting multi-start local search

Preprocessing found feasible solution with value

Done with local search

36.1767610000

1.00058825498

Iteration Open nodes

% * X ¥
ENTEN TN SN
© OO

12

00:
00:
00:
00:
00:
00:

Total time
000:
000:
000:
000:
000:
000:

00
00
00
00
01
01

Lower bound
.00000
.00000
.00000
.00000
.00000
.00000

Upper bound
36.1768
327.489
11.6106
12.1141
11.6559
1.11397

http://www.theoptimizationfirm.com/products/barmat

10 BARON user manual v. 13.0.0

* 12 9 000:00:01 1.00000 1.16749
* 12 9 000:00:01 1.00000 1.15795
* 12 7 000:00:01 1.00000 2.40994
* 13 8 000:00:01 1.00000 1.01772
* 13 8 000:00:01 1.00000 1.00601
* 13 8 000:00:01 1.00000 1.00069
* 13 8 000:00:01 1.00000 1.03484
* 13 8 000:00:01 1.00000 1.00006
* 15 8 000:00:01 1.00000 1.00188
* 16 8 000:00:01 1.00000 1.05901
* 17 9 000:00:01 1.00000 1.03244
* 19 9 000:00:01 1.00000 1.01447
* 27 14 000:00:01 1.00000 1.02129
* 30 17 000:00:01 1.00000 1.01574
* 31 17 000:00:01 1.00000 1.02728
* 35 19 000:00:01 1.00000 1.00476
* 40 19 000:00:02 1.00000 1.00006
* 40 19 000:00:02 1.00000 1.00954
* 42 21 000:00:02 1.00000 1.00018
* 43 20 000:00:02 1.00000 1.00954
* 45 20 000:00:02 1.00000 1.00488
* 45 20 000:00:02 1.00000 1.00004
* 52 20 000:00:02 1.00000 1.01225
* 58 22 000:00:02 1.00000 1.00545
* 65 21 000:00:02 1.00000 1.00314
* 66 20 000:00:02 1.00000 1.00935
* 76 18 000:00:02 1.00000 1.00006
* 76 18 000:00:02 1.00000 1.00476
* 88 21 000:00:02 1.00000 1.00476
* 89 21 000:00:02 1.00000 1.00476
* 89 21 000:00:02 1.00000 1.00004
* 100 22 000:00:02 1.00000 1.00288
* 111 21 000:00:02 1.00000 1.00061
* 112 20 000:00:02 1.00000 1.00111
* 114 20 000:00:02 1.00000 1.00188
* 115 19 000:00:02 1.00000 1.00006
* 119 19 000:00:02 1.00000 1.00004
* 122 20 000:00:02 1.00000 1.00151
* 124 20 000:00:02 1.00000 1.00006
* 145 20 000:00:02 1.00000 1.00079
* 147 18 000:00:02 1.00000 1.00078
* 152 19 000:00:02 1.00000 1.00062
* 156 21 000:00:02 1.00000 1.00014
* 157 20 000:00:02 1.00000 1.00006
* 161 20 000:00:02 1.00000 1.00006
* 177 17 000:00:02 1.00000 1.00028

BARON user manual v. 13.0.0

¥ X X X X X X X * ¥ X

187
191
213
230
247
263
267
386
436
458
1252
1342

Cleaning

up

LP subsolver time:
NLP subsolver time:

Cutting

time:

All other time:

Total time elapsed:

on
on
on
on
on
on
on
on
on

Total no.

parsing:

21
19
19
21
20
24
23
27
23
19
22

preprocessing:

navigating:
relaxed:
local:
tightening:
marginals:
probing:

IIS detection:

000:
000:
000:
000:
000:
000:
000:
000:
000:
000:
000:
000:

*** Normal

000:
000:
000:
000:

000:
000:
000:
000:
000:
000:
000:
000:
000:
000:

of BaR iterations:

Best solution found at node:
Max. no. of nodes in memory:

00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

13
13

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

02
02
02
02
02
02
02
02
02
02
03
03

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

e e i e T e e R S =

completion **x*

00,
02,
00,
00,

03,
00,
00,
00,
00,
02,
00,
00,
00,
00,

42
42
35

in
in
in
in

in
in
in
in
in
in
in
in
in
in

Cut generation statistics (number of cuts /
Bilinear
LD-Envelopes
Multilinears
Convexity
Integrality

All done

4

64

0
02
0
13
0

seconds:
seconds:
seconds:
seconds:

seconds:
seconds:
seconds:
seconds:
seconds:
seconds:
seconds:
seconds:
seconds:
seconds:

CPU sec)
0.00
0.01
0.00
0.01
0.03

e T = T =

O O N O

O O OO OO O ON

.00000
.00018
.00010
.00013
.00009
.00006
.00006
.00001
.00000
.00000
.00000
.00000

.27
.01
.04
.20

.52
.01
.10
.04
.34
.92
.03
.00
.06
.00

12 BARON user manual v. 13.0.0

The solver first tests feasibility of the user-supplied starting point. This point is found to be
feasible with an objective function value of 36.176761. BARON subsequently does its own search
and, during preprocessing, finds a feasible solution with an objective of 1.00058825498. Then,
the iteration log provides information every 1,000,000 branch-and-bound iterations and every 30
seconds. Additionally, information is printed at the end of the root node, whenever the value
of the incumbent is improved by at least 107°, and at the end of the search. A star (¥) in the
first position of a line indicates that a better feasible solution was found that improves the value
of previous best known solution by at least 1075, The log fields include the iteration number,
number of open branch-and-bound nodes, the CPU time taken thus far, the lower bound, and
the upper bound for the problem. The log output fields are summarized below:

Field Description

Iteration The number of the current iteration. A plus (+) following the iteration num-
ber denotes reporting while solving a probing (as opposed to a relaxation)
subproblem of the corresponding node.

Open Nodes Number of open nodes in branch-and-reduce tree.

Total Time Current elapsed resource time in seconds.

Lower Bound Current lower bound on the model.

Upper Bound Current upper bound on the model.

Once the branch-and-reduce tree is searched, the best solution is isolated and a corresponding
dual solution is calculated. Then, the total number of branch-and-reduce iterations (number of
search tree nodes) is reported, followed by the node where the best solution was identified (a
-1 indicates preprocessing as explained in the next section on termination messages). Finally,
some information is provided about the number and type of cutting planes generated during the
search.

4.2 Termination messages, model and solver statuses

Upon normal termination, BARON will report the node where the optimal solution was found.
We refer to this node as nodeopt. The log message is of the form:

Best solution found at node: (nodeopt)

where nodeopt can take the following values:

—3 no feasible solution found,
—2 the best solution found was the user-supplied,
—1 the best solution was found during preprocessing,
¢ the best solution was found in the ¢th node of the tree.

nodeopt =

In addition to reporting nodeopt, upon termination, BARON will issue one of the following
statements:

e xxx Normal completion ***. This is the desirable termination status. The problem has
been solved within tolerances in this case. If BARON returns a code of -3, then no feasible
solution exists.

BARON user manual v. 13.0.0 13

e xxx User did not provide appropriate variable bounds #***. The user will need to
read the BARON summary file for pointers to variables and expressions with missing bounds.
The model should be modified in order to provide bounds for variables and intermediate
expressions that make it possible for BARON to construct reliable relaxations. Even though
relaxation bounds are printed on the screen to give the user a feeling for convergence, these
bounds may not be valid for the problem at hand. This message is followed by one of the
following two messages:

e xx*x Infeasibility is therefore not guaranteed #***. This indicates that, be-
cause of missing bounds, no feasible solution was found but model infeasibility was
not proven.

e x*xx Globality is therefore not guaranteed ***. This indicates that, because
of missing bounds, a feasible solution was found but global optimality was not proven.

e x*x*x Max. allowable nodes in memory reached **x. The user will need to increase
the physical memory of the computer or change algorithmic options, such as branching and
node selection rules, to reduce the size of the search tree and memory required for storage.

e *x*xx Max. allowable BaR iterations reached *x**. The user will need to increase the
maximum number of allowable iterations. The BARON option is MaxIter.

e *xx Max. allowable CPU time exceeded *x**. The user will need to increase the max-
imum of allowable CPU time. The BARON option is MaxTime.

e *xx Problem is numerically sensitive ***x. BARON is designed to automatically
handle problems with numerical difficulties. However, for certain problems, the global
optimum is numerically sensitive. This occurs, for instance, when the objective function
value varies significantly over small neighborhoods of points that are strictly outside the
feasible region but are nonetheless feasible within numerical tolerances. When BARON
returns this message, the “Best possible” reported on the objective is likely correct.

e *x*x Search interrupted by user ***. The run was interrupted by the user (Ctrl-C).

e xxx Insufficient Memory for Data structures ***x. More memory is needed to set
up the problem data structures. The user will need to increase the physical memory
available on the computer in order to accommodate problems of this size.

e x*x*x Search terminated by BARON *#**. This will happen in certain cases when the re-
quired variable bounds are not provided in the input model. The user will need to read
the BARON output for likely pointers to variables and expressions with missing bounds
and fix the formulation, or be content with the solution provided. In the latter case the
solution may not be globally optimal.

e *xxx A potentially catastrophic access violation just took place. Inthe unlikely
event of an access violation, BARON will terminate the search and return the best known
solution. Please report problems that lead to this termination condition to Nick Sahinidis
(niksah@gmail.com).

4.3 BARON solution output

When BARON is used under Matlab, GAMS or AIMMS, the corresponding BARON interface
brings BARON results into these modeling environments; these users can skip this section. For

14

BARON user manual v. 13.0.0

those users who choose to use BARON outside of Matlab, GAMS or AIMMS, BARON’s solution
must be read from three output files:

The results file provides the results. Each solution found by BARON is reported in this
file as soon as it is calculated. Variable values and dual values for variables and constraints
are printed in the order in which variables and constraints are defined in the BARON file.
At the end of this file, a termination message, such as “*** Normal Completion ***” ig
printed, followed by the best solution point in two different formats, the last of which makes
use of the variable names used in the BARON file.

The summary file contains the information that goes to the screen. In addition, it provides
information on missing bounds, if any.

The time file contains a single line with concise information on the solution, including
a breakdown of iterations and times (the same information is available in the bottom of
summary file as well.)

As detailed in Section 6, the user has full control on whether any of these files will be written
or not. In addition, the user can specify the names and/or paths of these output files. The time
file should be read first after BARON’s termination in order to obtain information regarding
termination status. This file contains a single line with the following information:

ProName.
The number of constraints of the optimization problem.
The number of variables of the optimization problem.

The number of constraints in one of BARON’s core reformulations of the optimization
problem.

The number of variables in one of BARON'’s core reformulations of the optimization prob-
lem.

BARON’s lower bound for the global optimum of the problem.
BARON’s upper bound for the global optimum of the problem.
BARON’s solver status, which can take one of the following values:

1. If normal completion occurred, i.e., the problem was solved within tolerances.

o

If there is insufficient memory to store the number of nodes required for this search
tree (increase physical memory or change algorithmic options).

If the maximum allowed number of iterations was exceeded (increase maxiter).
If the maximum allowed CPU time was exceeded (increase maxtime).

If the problem is numerically sensitive.

A A ol

If the run was interrupted by user (Ctrl-C)

BARON user manual v. 13.0.0 15

7. If there was insufficient memory to setup BARON’s data structures (increase physical
memory).

9. If the run was terminated by BARON.

10. If the run was terminated by BARON'’s parser because of a syntax error in the BARON
input file.

11. If the run was terminated because of a licensing error.
e BARON’s model status, which can take one of the following values:

1. optimal within tolerances
2. infeasible

3. unbounded

4. intermediate feasible

5. unknown

e [f model status is 4 or 5, this entry denotes the number of missing bounds from vari-
ables/expressions that make BARON unable to guarantee global optimality.

e The number of branch and bound iterations taken
e The node where the best solution was found (nodeopt).
e The maximum number of nodes stored in memory.

e The total CPU time in seconds.

If nodeopt = —3, there will be no solution in the results file. Otherwise, the solution can
be found in the results file by starting from the end of the file, searching backward for “***”
and then reading the solution forward, one variable at a time. The variables are ordered in the
way they were defined in the VARIABLES section of the BARON file. The dual solution is also
provided there. In addition, the best primal solution is provided using variable names. If the
solution process is interrupted, for instance by Ctrl-C, the primal solution will be present in the
results file but not necessarily the corresponding dual.

If BARON declares the problem as unbounded, it will report its best solution found, possibly
followed by a vertex and direction of an unbounded ray at the end of the results file.

In the case of numsol > 1, BARON returns the best numsol solutions found. These solutions
follow right after the “***” mentioned above and they are sorted in improving order; the last
solution is the best. Duals may not be returned for all these solutions. For those solutions for
which a corresponding dual was found, the dual is also printed right after the primal. There will
typically be a dual solution for the best solution found and all local minima. However, there will
be no dual for non-KKT points, something that is most likely to happen in most applications.

When numsol = —1 (find all feasible solutions), the solutions are reported in the results file as
soon as they are found. These solutions are reported before the “***” and can be read from this
file by searching for occurrences of “found”, reading the solution reported immediately thereafter,
and repeating this process until all occurrences of “found” are identified. Again, many of these
solutions will be reported without corresponding duals. At the end of the file, i.e., following *****
Succ...”, the best solution can be read, along with its corresponding dual solution.

16 BARON user manual v. 13.0.0

5 Some BARON features

The features described in this section rely on options that are further detailed in the next section.
The user may also wish to consult the Tawarmalani-Sahinidis book! for more details on BARON
features and illustrations of their use.

5.1 No starting point is required

In contrast to many NLP algorithms that require a feasible starting point, a starting point is
not required for BARON. A user may optionally provide a starting point for all or even some of
the problem variables. BARON will judiciously initialize any variables that are not initialized
by the user. Even when the problem functions cannot be evaluated at a user-provided starting
point, BARON is still capable of carrying out its global search.

5.2 Finding a few of the best or all feasible solutions

BARON offers a facility, through its NumSol option to find the best few, or even all feasible, solu-
tions to a model. The development of this facility was motivated by combinatorial optimization
problems but the facility is applicable to continuous problems as well. Even for combinatorial
problems, BARON does not rely on integer cuts to find multiple solutions. Instead, it uti-
lizes a single search tree, thus providing a computationally efficient method for finding multiple
solutions. Furthermore, because BARON’s approach applies to integer as well as continuous
programs, it can be used to find all feasible solutions to a system of nonlinear equality and
inequality constraints.

Once a model is solved by BARON with the NumSol option, the solutions found can be read from
BARON results file. To illustrate this feature, we consider a problem in kinematic analysis of
robot manipulators, the so-called indirect-position or inverse kinematics problem, in which the
desired position and orientation of a robot hand is given and the relative robot joint displacements
are to be found. The specific example that we consider involves the following set of equations
for the PUMA robot:

MNT1T3 + Y2T2T3 + Y3T1 + YaZ2 + Y524 + V6T + 77 =0
Y813 + YoT2Z3 + Y10%1 + Y1102 + Y1224 + Y13 =0
Y14T6Tg + Y1571 + Y1eT2 = 0

M7%1 + Y18%2 + Y19 = 0

i+ 13 —1=0

i+ ri—1=0

TPl -1=0

i+ —1=0

1<z <1, i=1,...,8

ITawarmalani, M. and N. V. Sahinidis, Convezification and Global Optimization in Continuous and Mized-
Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, 504 pages, Kluwer Academic
Publishers, Dordrecht, Vol. 65 in Nonconvexr Optimization And Its Applications series, 2002.

BARON user manual v. 13.0.0 17

where
v1 = 0.004731 Yo =1 v11 = —0.07745 v16 = 0.004731
Yo = —0.3578 vr = —0.3571 Y12 = —0.6734 Y17 = —0.7623
v3 = —0.1238 v = 0.2238 Y13 = —0.6022 Y18 = 0.2238
v, = —001637 Y9 = 0.7638 Vg =1 Y19 = 0.3461
~v5 = —0.9338 Y10 = 0.2638 Y15 = 0.3578

The first four equations of this problem are bilinear while the last four are generalized cylinders.
BARON’s scheme for finding all feasible solutions works well in continuous spaces as long as the
solutions are isolated (separated by a certain distance). The BARON option isoltol (default
value of 10™%) allows the user to specify the isolation tolerance to be used to discriminate among
different solutions. In order for two feasible solution vectors to be considered different, at least
one of their coordinates must differ by isoltol.

The BARON file for the robot problem is as follows:

// Filename: robot.bar

//

// Purpose: Find all solutions of the PUMA robot problem

// L.-W. Tsai and A. P. Morgan, "Solving the kinematics of the
// most general six- and five-degree-of-freedom manipulators by

// continuation methods," ASME J. Mech. Transm. Automa. Des.,
// 107, 189-200, 1985.

OPTIONS{

numsol: 20;

}

VARIABLES x1,x2,x3,x4,x5,x6,x7,x8;

LOWER_BOUNDS{

x1: -1;
x2: -1;
x3: -1;
x4: -1;
x5: -1;
x6: -1;
x7: -1;
x8: -1;
}
UPPER_BOUNDS{
x1: 1;
x2: 1;
x3: 1;
x4: 1;

18

BARON user manual v. 13.0.0

x5:
x6:
X7:
x8:

EQUATIONS

[

e

e2,e3,e4,e5,e6,e7,e8,e9,e10,el11,e12,e13,el14,e15,e16;

e2: 0.004731xx1*x3 - 0.1238*x1 - 0.3578*x2*x3 - 0.001637*x2 - 0.9338*x4 + x7

e3:

ed:

eb:

eb:

e7:

e8:

e9:

el0:

ell:

el2:

el3:

eld:

el5:

el6:

0BJ:

The

solutions can be found after the “*** Normal Completion

<= 0.3571;

0.1238*x1 - 0.004731*xx1*x3 + 0.3578*x2*x3 + 0.001637*x2 + 0.9338*x4 - x7

<= -0.3571;

0.2238*x1*x3 + 0.2638*x1 + 0.7623*x2*x3 - 0.07745%x2 - 0.6734*x4 - x7

<= 0.6022;

(-0.2238*x1%x3) - 0.2638*x1 - 0.7623*x2*x3 + 0.07745%x2 + 0.6734*x4 + x7

<= -0.6022;

x6*x8 + 0.3578*x1 + 0.004731*x2

- x6*x8 - 0.3578%x1 - 0.004731x*x2

- 0.7623*x1 + 0.2238*x2 == -0.3461;

x172 + x272 <= 1;

(-x172) - x2°2

x372 + x472 <=

(-x372) - x4°2

x572 + x672 <=

(-x5"2) - x672

X772 + x872 <=

(-x7"2) - x872

minimize 0;

<=

<=

above problem has 14 different solutions. Looking at the BARON results file, all these

KKk

message.

BARON user manual v. 13.0.0 19

5.3 Using BARON as a multi-start heuristic solver

To gain insight into the difficulty of a nonlinear program, especially with regard to existence of
multiple local solutions, modelers often make use of multiple local searches from randomly gen-
erated starting points. This can be easily done with BARON’s NumLoc option, which determines
the number of local searches to be done by BARON’s preprocessor. BARON can be forced to
terminate after preprocessing by setting the number of iterations to 0 through the MaxIter op-
tion. In addition to local search, BARON’s preprocessor performs extensive reduction of variable
ranges. To sample the search space for local minima without range reduction, one would have to
set to 0 the range reduction options TDo, MDo, LPTTDo, and OBTTDo. On the other hand, leaving
these options to their default values increases the likelihood of finding high quality local optima
during preprocessing. If NumLoc is set to —1, local searches in preprocessing will be done from
randomly generated starting points until global optimality is proved or MaxTime CPU seconds
have elapsed.

5.4 Systematic treatment of unbounded problems

If BARON declares a problem as unbounded, it will search for and may report a vertex and
direction of an unbounded ray. In addition, BARON will report the best solution found. This
will be a feasible point that is as far as possible along an unbounded ray while avoiding numerical
errors due to floating point arithmetic.

6 The BARON options

The BARON options allow the user to control termination tolerances, branching and relaxation
strategies, heuristic local search options, and output options as detailed in this section.

Contrary to variable names, the BARON parser is not case-sensitive to option names.

6.1 Termination options

Option Description Default
EpsA (e,) Absolute termination tolerance. BARON terminates if le-6
U—-L < ¢, where U and L are the lower and upper
bounds for the optimization problem at the current itera-
tion. EpsA must be a real greater than or equal to le-12.
EpsR (€,.) Relative termination tolerance. BARON terminates if L > 1e-9
oo and U — L < ¢|L|, where U and L are the lower and
upper bounds for the optimization problem at the current
iteration. EpsR must be a nonnegative real.

20

BARON user manual v. 13.0.0

DeltaTerm

Users have the option to request BARON to terminate if
insufficient progress is made over ¢; consecutive seconds.
Progress is measured using the absolute and relative im-
provement thresholds §, and ¢, defined below. Termina-
tion will occur if, over a period of §; consecutive seconds,
the value of the best solution found by BARON is not im-
proved by at least an absolute amount §, or an amount
equal to 9, times the value of the incumbent at time t — 9.
This termination condition is enforced after processing the
root node and only after a feasible solution has been ob-
tained.

0: do not enforce this termination condition

1: terminate if progress is insufficient

DeltaT (¢;)

If DeltaTerm is set to 1, BARON will terminate if insuffi-
cient progress is made over ¢; consecutive seconds. If ; is
set to a non-positive quantity, BARON will automatically
set d; equal to —d; times the CPU time taken till the end
of root node processing. DeltaT can take any real value.

-100

DeltaA (9,)

Absolute improvement termination threshold. DeltaA
must be a real greater than or equal to le-12.

DeltaR (6,)

Relative improvement termination threshold. DeltaR
must be a real greater than or equal to le-12.

CutOff

BARON may ignore parts of the search space that contain
solutions that are no better than this value. CutOff can
take any real value.

AbsConFeasTol

Absolute constraint feasibility tolerance. AbsConFeasTol
must be a real greater than or equal to le-12.

le-5

RelConFeasTol

Relative constraint feasibility tolerance. RelConFeasTol
must be a nonnegative real.

AbsIntFeasTol

Absolute integer feasibility tolerance. AbsIntFeasTol
must be a real greater than or equal to le-12.

le-5

RelIntFeasTol

Relative integer feasibility tolerance. RelIntFeasTol
must be a nonnegative real.

BoxTol

Boxes will be eliminated if smaller than this tolerance.
BoxTol must be a real greater than or equal to le-12.

1e-8

FirstFeas

If set to 1, BARON will terminate once it finds NumSol

feasible solutions, irrespective of solution quality. By de-

fault, FirstFeas is 0, meaning that BARON will search

for the best NumSol feasible solutions.

0: do not enforce this termination condition

1: terminate as soon as NumSol feasible solutions
are found

BARON user manual v. 13.0.0

21

MaxIter

Maximum number of branch-and-reduce iterations al-
lowed. —1 implies unlimited. Setting MaxIter to 0 will
force BARON to terminate after root node preprocessing.
Setting MaxIter to 1 will result in termination after the
solution of the root node. MaxIter must be an integer
greater than or equal to —1.

MaxTime

Maximum CPU time allowed (sec). Setting MaxTime to —1
will make BARON ignore the time limit. MaxTime must
be a real greater equal to —1 or greater than 0.

1000

NumSol

Number of feasible solutions to be found. Solutions found
will be listed in the results file. As long as NumSol #
-1, these solutions will be sorted from best to worse. If
NumSol is set to —1, BARON will search for all feasible
solutions to the given model and print them, in the order
in which they are found, in the results file. NumSol must
be an integer greater than or equal to —1.

IsolTol

Separation distance between solutions. This option is used
in conjunction with NumSol. For combinatorial optimiza-
tion problems, feasible solutions are isolated. For contin-
uous problems, feasible solutions points within an [, dis-
tance that does not exceed IsolTol > 0 will be treated
as identical by BARON. IsolTol can take any positive
value greater than or equal to le-12.

le-4

6.2 Relaxation options

Option

Description

Default

NQOuteril

Number of outer approximators of convex univariate func-
tions. NOuterl must be a nonnegative integer.

4

NOutPerVar

Number of outer approximators per variable for convex
multivariate functions. NOutPerVar must be a nonnega-
tive integer.

4

NOutIter

Number of rounds of cutting plane generation at node re-
laxation. NOutIter must be a nonnegative integer.

OutGrid

Number of grid points per variable for convex multivariate
approximators. OutGrid must be a nonnegative integer.

20

6.3 Range reduction options

Option

Description

Default

TDo

Nonlinear-feasibility-based range reduction option (poor
man’s NLPs).

0: no bounds tightening is performed.

1: bounds tightening is performed.

1

22 BARON user manual v. 13.0.0

MDo Marginals-based reduction option. 1
0: no range reduction based on marginals.
1: range reduction done based on marginals.

LBTTDo Linear-feasibility-based range reduction option (poor 1
man’s LPs).
0: no range reduction based on feasibility.
1: range reduction done based on feasibility.

OBTTDo Optimality-based tightening option. 1
0: no range reduction based on optimality.
1: range reduction done based on optimality.

PDo Number of probing problems allowed. -2
-2: automatically decided by BARON.
0: no range reduction by probing.
-1: probing on all variables.
n: probing on n variables.

6.4 'Tree management options

Option Description Default
BrVarStra Branching variable selection strategy. 0
0: BARON’s dynamic strategy
1: largest violation
2: longest edge
BrPtStra Branching point selection strategy. 0
0: BARON’s dynamic strategy
1: w-branching
2: bisection-branching
3: convex combination of w and bisection
NodeSel Specifies the node selection rule to be used for exploring 0
the search tree.

0: BARON's strategy
1: best bound

2: LIFO

3: minimum infeasibilities

BARON user manual v. 13.0.0

23

BPInt

Branching in BARON takes place on integer and non-
linear continuous variables. Users can specify branching
priorities for any discrete and continuous variables using
the BRANCHING_PRIORITIES keyword in the BARON input
file. Default branching priorities in BARON are 1 for all
variables, thus placing equal emphasis on all integer and
continuous variables. The option BPInt can be used to ad-
just the priorities of integer variables. Priorities of integer
variables are multiplied by BPInt. Larger values of BPInt
place higher emphasis on integer variables for branching.
BPInt must be a non-negative real.

6.5 Local search options

Option

Description

Default

DoLocal

Local search option for upper bounding.

0: no local search is done during upper bounding

1: BARON automatically decides when to apply lo-
cal search based on analyzing the results of pre-
vious local searches

1

NumLoc

Number of local searches done in preprocessing. The first
one begins with the user-specified starting point. Sub-
sequent local searches are done from judiciously chosen
starting points. If NumLoc is set to —1, local searches
in preprocessing will be done until proof of globality or
MaxTime is reached. If NumLoc is set to —2, BARON de-
cides the number of local searches in preprocessing based
on problem and NLP solver characteristics. NumLoc must
be an integer greater than or equal to —2.

6.6 Output options

Option

Description

Default

PrFreq

Log output frequency in number of nodes.

1000000

PrTimeFreq

Log output frequency in number of seconds.

30

PrLevel

Option to control log output.
0: all log output is suppressed.

1: print log output.

1

LocRes

Option to control output to log from local search.

0: no local search output.

1: detailed results from local search will be printed
to the results file.

ProName

Problem name. This option must be provided in double
quotes and be no longer than 10 characters.

problem

24 BARON user manual v. 13.0.0

results Indicator if a results file is to be created. 1
0: do not create file
1: create file named according to the ResName op-
tion
ResName Name of results file to be written. This option must be res.lst
provided in double quotes.
summary Indicator if a summary file is to be created. 0
0: do not create file
1: create file named according to the SumName op-
tion.
SumName Name of summary file to be written. This option must be sum.lst
provided in double quotes.
times Indicator if a times file is to be created. 0
0: do not create file
1: create file named according to the TimName op-
tion.
TimName Name of times file to be written. This option must be tim.1lst

provided in double quotes.

6.7 Subsolver options

Option Description Default
LPSol Specifies the LP solver to be used. 3

3: CPLEX

8: CLP
LPAlg Specifies the LP algorithm to be used. 0

0: automatic selection of LP algorithm

1: primal simplex
2: dual simplex
3 barrier

BARON user manual v. 13.0.0 25

NLPSol Specifies the NLP solver to be used. By default, BARON -1
will select the NLP solver and may switch between dif-
ferent NLP solvers during the search, based on problem
characteristics and solver performance. Any combination
of licensed NLP solvers may be used in that case. A single
specific NLP solver can be specified by setting this option
to a value other than the default. If the specified solver
is not licensed, BARON will default to automatic solver
selection.
-1: automatic solver selection
2: MINOS
4: SNOPT
9: IPOPT
AllowMinos In case of automatic NLP solver selection, this option can 1
be used to selectively permit or disallow the use of MINOS
as an NLP subsolver.

0: do not use MINOS for local search
1: consider MINOS for local search
AllowSnopt In case of automatic NLP solver selection, this option can 1

be used to selectively permit or disallow the use of SNOPT
as an NLP subsolver.

0: do not use SNOPT for local search
1: consider SNOPT for local search
AllowIpopt In case of automatic NLP solver selection, this option can 1

be used to selectively permit or disallow the use of [IPOPT
as an NLP subsolver.

0: do not use IPOPT for local search

1: consider IPOPT for local search

6.8 Licensing options

Option Description Default
LicName License file name. This option must be provided in double baronlice.txt
quotes and provide the entire path to the location of the
BARON license file. Alternatively, the user can place the
BARON license file baronlice.txt anywhere in the user
PATH. This option is not applicable to BARON under

GAMS or AIMMS.

7 Bibliography

The following is a partial list of BARON-related publications that describe the algorithms im-
plemented in the software, the theory behind them, and some related applications.

26

BARON user manual v. 13.0.0

10.

11.

12.

13.

14.

. H.S. Ryoo and N. V. Sahinidis. Global optimization of nonconvex NLPs and MINLPs with

applications in process design. Computers & Chemical Engineering, 19:551-566, 1995.

M. C. Dorneich and N. V. Sahinidis. Global optimization algorithms for chip layout and
compaction. Engineering Optimization, 25:131-154, 1995.

. H. S. Ryoo and N. V. Sahinidis. A branch-and-reduce approach to global optimization.

Journal of Global Optimization, 8:107-139, 1996.

N. V. Sahinidis. BARON: A general purpose global optimization software package. Journal
of Global Optimization, 8:201-205, 1996.

R. A. Gutierrez and N. V. Sahinidis. A branch-and-bound approach for machine selection
in just-in-time manufacturing systems. International Journal of Production Research,
34:797-818, 1996.

M. L. Liu, N. V. Sahinidis, and J. P. Shectman. Planning of chemical process networks via
global concave minimization. In I. E. Grossmann (ed.), Global Optimization in Engineering
Design, Kluwer Academic Publishers, Boston, MA, pages 195-230, 1996.

V. Ghildyal. Design and Development of a Global Optimization System. Master’s thesis,
Department of Mechanical & Industrial Engineering, University of Illinois, Urbana, IL,
1997.

J. G. VanAntwerp, R. D. Braatz, and N. V. Sahinidis. Globally optimal robust control for
systems with nonlinear time-varying perturbations. Computers € Chemical Engineering,
21:5125-S130, 1997.

J. P. Shectman and N. V. Sahinidis. A finite algorithm for global minimization of separable
concave programs. Journal of Global Optimization, 12:1-36, 1998.

J. G. VanAntwerp, R. D. Braatz, and N. V. Sahinidis. Globally optimal robust control. J.
Process Control, 9:375-383, 1999.

N. V. Sahinidis and M. Tawarmalani. Applications of global optimization to process and
molecular design. Computers & Chemical Engineering, 24:2157-2169, 2000.

V. Ghildyal and N. V. Sahinidis. Solving global optimization problems with BARON.
In A. Migdalas, P. Pardalos, and P. Varbrand (eds.), From Local to Global Optimization.
A Workshop on the Occasion of the 70th Birthday of Professor Hoang Tuy, Linkoping,
Sweden, Aug. 24-29, 1997, Kluwer Academic Publishers, Boston, MA, pages 205-230,
2001.

H. S. Ryoo and N. V. Sahinidis. Analysis of bounds for multilinear functions. Journal of
Global Optimization, 19:403-424, 2001.

M. Tawarmalani and N. V. Sahinidis. Semidefinite relaxations of fractional programs
via novel techniques for constructing convex envelopes of nonlinear functions. Journal of
Global Optimization, 20:137-158, 2001.

BARON user manual v. 13.0.0 27

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

. M. Tawarmalani and N. V. Sahinidis. Convex extensions and convex envelopes of l.s.c.
functions. Mathematical Programming, 93:247-263, 2002.

M. Tawarmalani and N. V. Sahinidis. Convezification and Global Optimization in Con-
tinuous and Mized-Integer Nonlinear Programming: Theory, Algorithms, Software, and
Applications. Kluwer Academic Publishers, Dordrecht, 2002.

M. Tawarmalani, S. Ahmed, and N. V. Sahinidis. Global optimization of 0—1 hyperbolic
programs. Journal of Global Optimization, 24:385-417, 2002.

M. Tawarmalani, S. Ahmed, and N. V. Sahinidis. Product disaggregation and relaxations
of mixed-integer rational programs. Optimization and Engineering, 3:281-303, 2002.

N. V. Sahinidis, M. Tawarmalani, and M. Yu. Design of alternative refrigerants via global
optimization. AIChE Journal, 49:1761-1775, 2003.

H. S. Ryoo and N. V. Sahinidis. Global optimization of multiplicative programs. Journal
of Global Optimization, 26:387-418, 2003.

N. V. Sahinidis. Global optimization and constraint satisfaction: The branch-and-reduce
approach. In AC. Bliek, C. Jermann, and A. Neumaier (eds.), Global Optimization and
Constraint Satisfaction, Lecture Notes in Computer Science, Vol. 2861, Springer, Berlin,
pages 1-16, 2003.

S. Ahmed, M. Tawarmalani, and N. V. Sahinidis. A finite branch-and-bound algorithm for
two-stage stochastic integer programs. Mathematical Programming, 100:355-377, 2004.

M. Tawarmalani and N. V. Sahinidis. Global optimization of mixed-integer nonlinear
programs: A theoretical and computational study. Mathematical Programming, 99:563—
591, 2004.

N. V. Sahinidis and M. Tawarmalani. Accelerating branch-and-bound through a modeling
language construct for relaxation-specific constraints. Journal of Global Optimization,
32:259-280, 2005.

M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut approach to global
optimization. Mathematical Programming, 103:225-249, 2005.

Y. Chang and N. V. Sahinidis. Global optimization in stabilizing controller design. Journal
of Global Optimization, 38:509-526, 2007.

X. Bao, N. V. Sahinidis, and M. Tawarmalani. Multiterm polyhedral relaxations for non-
convex, quadratically-constrained quadratic programs. Optimization Methods and Soft-
ware, 24:485-504, 2009.

L. M. Rios and N. V. Sahinidis. Portfolio optimization for wealth-dependent risk prefer-
ences. Annals of Operations Research, 177:63-90, 2010.

X. Bao, N. V. Sahinidis, and M. Tawarmalani. Semidefinite relaxations for quadratically
constrained quadratic programming: A review and comparisons. Mathematical Program-
ming, 129:129-157, 2011.

28

BARON user manual v. 13.0.0

30

31

32.

33.

34.

. A. Khajavirad, J. J. Michalek and N. V. Sahinidis. Relaxations of factorable functions with
convex-transformable intermediates. Mathematical Programming, DOI: 10.1007/s10107-
012-0618-8, 2012.

. A. Khajavirad and N. V. Sahinidis. Convex envelopes of products of convex and component-
wise concave functions. Journal of Global Optimization, 52:391-409, 2012.

A. Khajavirad and N. V. Sahinidis. Convex envelopes generated from finitely many com-
pact convex sets. Mathematical Programming, 137:371-408, 2013.

K. Zorn and N. V. Sahinidis. Global optimization of general nonconvex problems with
intermediate bilinear substructures. Optimization Methods and Software, 29:442-462, 2013.

K. Zorn and N. V. Sahinidis. Computational experience with applications of bilinear
cutting planes. Industrial € Engineering Chemistry Research, accepted for publication,
2013.

	BARON user manual v. 13.0.0
	Introduction
	Licensing and software requirements

	Model requirements
	Allowable nonlinear functions
	Variable and expression bounds

	BARON input
	Usage
	Input grammar
	The options section
	The problem data
	Error messages
	Sample input file
	Other ways to access BARON

	BARON output
	BARON screen output
	Termination messages, model and solver statuses
	BARON solution output

	Some BARON features
	No starting point is required
	Finding a few of the best or all feasible solutions
	Using BARON as a multi-start heuristic solver
	Systematic treatment of unbounded problems

	The BARON options
	Termination options
	Relaxation options
	Range reduction options
	Tree management options
	Local search options
	Output options
	Subsolver options
	Licensing options

	Bibliography

